91 research outputs found

    Physical Sensors for Precision Aquaculture: A Review

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Aquaculture is presented as a sustainable method to provide fish, although in reality, it is far from being sustainable. Its negative impacts on the environment can be prevented and corrected by the use of sensors, developing precision aquaculture. Sensors are widely used in terrestrial applications, but in underwater environments, their use is constrained by a variety of issues. The aim of this paper is to describe the state-of-the-art of the underwater sensors for water quality monitoring. First, the requirements and challenges of underwater sensors for aquaculture monitoring are discussed in detail. The main challenges are the need of a waterproof isolation or the need to avoid corrosion and biofouling, among others. Second, there are some advantages compared with the terrestrial applications, such as no need of minimized systems or the fact that such systems only require low accuracy. Subsequently, we evaluated the different options available to sense each variable, related to the needs of the aquaculture sensors. For temperature monitoring, thermistors, thermocouples or RTC seem to offer similar advantages. In contrast, for dissolved oxygen monitoring, the optical method seems to be the best option. For turbidity, optical methods are the most employed ones, while for conductivity measurements, the inductive coils are a promising option.This work was supported by the pre-doctoral student grant "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)" with reference: FPU14/02953 by the Ministerio de Educacion, Cultura y Deporte.Parra-Boronat, L.; Lloret Mauri, G.; Lloret, J.; Rodilla, M. (2018). Physical Sensors for Precision Aquaculture: A Review. IEEE Sensors Journal. 18(10):3915-3923. https://doi.org/10.1109/JSEN.2018.2817158S39153923181

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    La protección de datos en terminales y ordenadores de uso público

    Get PDF
    In this work it is carried out an analysis, search of solutions and later use to introduce a security policy to guarantee users data protection in public terminals or computers with Internet connection. As an example of these there are, terminals placed in universities, cybercafes, Internet access in libraries, free access classrooms in universities, etc., some of them are very extended in Europe. To carry out this investigation, the directives 95/46/CE and 2002/58/EC of European Parliament and of the Council and the Organic Laws 10/1995 and 15/1999 of the Spanish Penal Code have been studied. This kind of environments does not have an explicit legislation with its all characteristics that assures the users privacy. For this development the inconveniences in a transmission medium has been analysed due to the unprotected users data circulation in the local network medium. Subsequently, a study of the deficiencies in the initial configuration in some terminals or computers operating systems, according to the request of being used by multiple users has been carried out. Likewise, the administrator configurations in this kind of environments have also been studied in order to develop some proposals and recommendations, in data privacy and protection. These proposals and recommendations should be adopted in organisms or companies with public terminals or computers to avoid harming this privacy, without the proprietor's consent. It is examined the directives 95/46/CE and 2002/58/CE of the European Parliament and of the Council, taking care of its repercussion in these kind of insecurities. Later, several implanted security policies are exposed to offer different adopted solutions. All of these solutions should be accomplished in every system independently of the hardware, the operating system or the used applications. Finally, it is elaborated some conclusions to indicate the necessity of a directive and laws to regulate the personal data protection in these environments

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    XIII Jornadas de ingeniería telemática (JITEL 2017)

    Full text link
    Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equiposLloret Mauri, J.; Casares Giner, V. (2018). XIII Jornadas de ingeniería telemática (JITEL 2017). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/97612EDITORIA

    A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

    Full text link
    Compared to traditional distributed computing environments such as grids, cloud computing provides a more cost-effective way to deploy scientific workflows. Each task of a scientific workflow requires several large datasets that are located in different datacenters from the cloud computing environment, resulting in serious data transmission delays. Edge computing reduces the data transmission delays and supports the fixed storing manner for scientific workflow private datasets, but there is a bottleneck in its storage capacity. It is a challenge to combine the advantages of both edge computing and cloud computing to rationalize the data placement of scientific workflow, and optimize the data transmission time across different datacenters. Traditional data placement strategies maintain load balancing with a given number of datacenters, which results in a large data transmission time. In this study, a self-adaptive discrete particle swarm optimization algorithm with genetic algorithm operators (GA-DPSO) was proposed to optimize the data transmission time when placing data for a scientific workflow. This approach considered the characteristics of data placement combining edge computing and cloud computing. In addition, it considered the impact factors impacting transmission delay, such as the band-width between datacenters, the number of edge datacenters, and the storage capacity of edge datacenters. The crossover operator and mutation operator of the genetic algorithm were adopted to avoid the premature convergence of the traditional particle swarm optimization algorithm, which enhanced the diversity of population evolution and effectively reduced the data transmission time. The experimental results show that the data placement strategy based on GA-DPSO can effectively reduce the data transmission time during workflow execution combining edge computing and cloud computing

    A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass

    Full text link
    [EN] The excessive use of chemical fertilizers can lead to severe environmental damages. In recent decades, the application of biostimulants to improve soil composition and stimulate plant growth has contributed significantly to environmental preservation. In this paper, we studied the effect of a rhizogenic biostimulant, obtained from fulvic acids, probiotics, and prebiotics, on the fertility of two types of soils, sandy and sandy loam soils, in which turfgrass was growing. Soil samples from plots treated with biostimulant and controls (untreated plots) were collected. The analyzed parameters from the soil include organic matter, microbial activity, soil chemical composition, catalase, dehydrogenase, and phosphatase enzyme activities. Moreover, root lengths was examined and compared in turfgrass species. The biostimulant application improved microbial activity, organic matter, and enzymatic activity in both types of soils. The soil calcium, potassium, magnesium, and phosphorus content increased with the biostimulant application, whereas pH and electrical conductivity decreased. The most relevant improvement was a 77% increase of calcium for sandy loam soil and 38% increase in potassium for sandy soil. Biostimulant application led to a significant increase in turf root length. This increase was greater for sandy soil than in sandy loam soil with an increment of 43% and 34% respectively, compared to control.This research was funded by AREA VERDE-MG projects, by project PDR18-XEROCESPED, funded under the PDR-CM 2014-2020 by the EU (European Agricultural Fund for Rural Development, EAFRD), Spanish Ministry of Agriculture, Fisheries and Food (MAPA) and Comunidad de Madrid regional government through IMIDRA. and by a post-doc grant by Conselleria de Educacion, Cultura y Deporte through "Subvenciones para la contratacion de personal investigador en fase postdoctoral", reference APOSTD/2019/04.Yousfi, S.; Marin, J.; Parra, L.; Lloret, J.; Mauri, PV. (2021). A Rhizogenic Biostimulant Effect on Soil Fertility and Roots Growth of Turfgrass. Agronomy. 11(3). https://doi.org/10.3390/agronomy11030573S11

    Internet of Unmanned Aerial Vehicles: QoS Provisioning in Aerial Ad-Hoc Networks

    Get PDF
    Aerial ad-hoc networks have the potential to enable smart services while maintaining communication between the ground system and unmanned aerial vehicles (UAV). Previous research has focused on enabling aerial data-centric smart services while integrating the benefits of aerial objects such as UAVs in hostile and non-hostile environments. Quality of service (QoS) provisioning in UAV-assisted communication is a challenging research theme in aerial ad-hoc networks environments. Literature on aerial ad hoc networks lacks cooperative service-oriented modeling for distributed network environments, relying on costly static base station-oriented centralized network environments. Towards this end, this paper proposes a quality of service provisioning framework for a UAV-assisted aerial ad hoc network environment (QSPU) focusing on reliable aerial communication. The UAV’s aerial mobility and service parameters are modelled considering highly dynamic aerial ad-hoc environments. UAV-centric mobility models are utilized to develop a complete aerial routing framework. A comparative performance evaluation demonstrates the benefits of the proposed aerial communication framework. It is evident that QSPU outperforms the state-of-the-art techniques in terms of a number of service-oriented performance metrics in a UAV-assisted aerial ad-hoc network environment

    RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C-3 and C-4 Turfgrass under Different Water Conditions

    Full text link
    [EN] Grasslands have a natural capacity to decrease air pollution and a positive impact on human life. However, their maintenance requires adequate irrigation, which is difficult to apply in many regions where drought and high temperatures are frequent. Therefore, the selection of grass species more tolerant to a lack of irrigation is a fundamental criterion for green space planification. This study compared responses to deficit irrigation of different turfgrass mixtures: a C-4 turfgrass mixture, Cynodon dactylon-Brachypodium distachyon (A), a C-4 turfgrass mixture, Buchloe dactyloides-Brachypodium distachyon (B), and a standard C-3 mixture formed by Lolium perenne-Festuca arundinacea-Poa pratensis (C). Three different irrigation regimes were assayed, full irrigated to 100% (FI-100), deficit irrigated to 75% (DI-75), and deficit irrigated to 50% (DI-50) of container capacity. Biomass, normalized difference vegetation index (NDVI), green area (GA), and greener area (GGA) vegetation indices were measured. Irrigation significantly affected the NDVI, biomass, GA, and GGA. The most severe condition in terms of decreasing biomass and vegetation indices was DI-50. Both mixtures (A) and (B) exhibited higher biomass, NDVI, GA, and GGA than the standard under deficit irrigation. This study highlights the superiority of (A) mixture under deficit irrigation, which showed similar values of biomass and vegetation indices under full irrigated and deficit irrigated (DI-75) container capacities.This research was funded by AREA VERDE-MG projects and Projects GO-PDR18-XEROCESPED funded by the European Agricultural Fund for Rural Development (EAFRD) and IMIDRA.Marín, J.; Yousfi, S.; Mauri, PV.; Parra, L.; Lloret, J.; Masaguer, A. (2020). RGB Vegetation Indices, NDVI, and Biomass as Indicators to Evaluate C-3 and C-4 Turfgrass under Different Water Conditions. Sustainability. 12(6):1-16. https://doi.org/10.3390/su1206216011612

    Evaluating the Effects of Environmental Conditions on Sensed Parameters for Green Areas Monitoring and Smart Irrigation Systems

    Full text link
    [EN] The irrigation of green areas in cities should be managed appropriately to ensure its sustainability. In large cities, not all green areas might be monitored simultaneously, and the data acquisition time can skew the gathered value. Our purpose is to evaluate which parameter has a lower hourly variation. We included soil parameters (soil temperature and moisture) and plant parameters (canopy temperature and vegetation indexes). Data were gathered at 5 different hours in 11 different experimental plots with variable irrigation and with different grass composition. The results indicate that soil moisture and Normalized Difference Vegetation Index are the sole parameters not affected by the data acquisition time. For soil moisture, the maximum difference was in experimental plot 4, with values of 21% at 10:45 AM and 27% at 8:45 AM. On the other hand, canopy temperature is the most affected parameter with a mean variation of 15 degrees C in the morning. The maximum variation was in experimental plot 8 with a 19 degrees C at 8:45 AM and 39 degrees C at 12:45 PM. Data acquisition time affected the correlation between soil moisture and canopy temperature. We can affirm that data acquisition time has to be included as a variability source. Finally, our conclusion indicates that it is vital to consider data acquisition time to ensure water distribution for irrigation in cities.This research was funded by AREA VERDE-MG projects, by project PDR18-XEROCESPED funded under the PDR-CM 2014-2020 by the EU (European Agricultural Fund for Rural Development, EAFRD), Spanish Ministry of Agriculture, Fisheries and Food (MAPA) and Comunidad de Madrid regional government through IMIDRA, and by the Conselleria de Educacion, Cultura y Deporte through "Subvenciones para la contratacion de personal investigador en fase postdoctoral", grant number APOSTD/2019/04.Mauri Ablanque, PV.; Parra-Boronat, L.; Yousfi, S.; Lloret, J.; Marin, JF. (2021). Evaluating the Effects of Environmental Conditions on Sensed Parameters for Green Areas Monitoring and Smart Irrigation Systems. Sensors. 21(6):1-22. https://doi.org/10.3390/s2106225512221
    • …
    corecore